Derivation of a parameter stabilizing training criterion for adaptive neuro-fuzzy inference systems in motion control
نویسندگان
چکیده
This paper presents a novel training algorithm for adaptive neuro-fuzzy inference systems. The algorithm combines the Error Backpropagation (EBP) algorithm with Variable Structure Systems (VSS) approach. Expressing the parameter update rule as a dynamic system in continuous time and applying sliding mode control (SMC) methodology to the dynamic model of the gradient based training procedure results in the parameter stabilizing part of training algorithm. The proposed combination therefore exhibits a degree of robustness to the unmodeled multivariable internal dynamics of gradient based training algorithm. With conventional training procedures, the excitation of this dynamics during a training cycle can lead to instability, which may be difficult to alleviate due to the multidimensionality of the solution space and the ambiguities concerning the environmental conditions. This paper shows that a neuro-fuzzy model can be trained such that the adjustable parameter values are forced to settle down (parameter stabilization) while minimizing an appropriate cost function (cost optimization), which is based on state tracking performance. In the application example, trajectory control of a two degrees of freedom direct drive SCARA robotic manipulator is considered. As the controller, an adaptive neuro-fuzzy inference mechanism is used and in the parameter tuning, the proposed algorithm is utilized.
منابع مشابه
Long-term Streamflow Forecasting by Adaptive Neuro-Fuzzy Inference System Using K-fold Cross-validation: (Case Study: Taleghan Basin, Iran)
Streamflow forecasting has an important role in water resource management (e.g. flood control, drought management, reservoir design, etc.). In this paper, the application of Adaptive Neuro Fuzzy Inference System (ANFIS) is used for long-term streamflow forecasting (monthly, seasonal) and moreover, cross-validation method (K-fold) is investigated to evaluate test-training data in the model.Then,...
متن کاملA Flexible Link Radar Control Based on Type-2 Fuzzy Systems
An adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented in this paper. The capability of the proposed method (we named ANFIS2) for function approximation and dynamical system identification is remarkable. The structure o...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملAn indirect adaptive neuro-fuzzy speed control of induction motors
This paper presents an indirect adaptive system based on neuro-fuzzy approximators for the speed control of induction motors. The uncertainty including parametric variations, the external load disturbance and unmodeled dynamics is estimated and compensated by designing neuro-fuzzy systems. The contribution of this paper is presenting a stability analysis for neuro-fuzzy speed control of inducti...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Systems Science
دوره 32 شماره
صفحات -
تاریخ انتشار 2001